
Cheat sheet

Switch

You can apply a switch to multiple data types: String, Enum,
Int, Float, and other types.

Example:

 let someString: String = "first"
 switch <value> {
 case <pattern>:
 <code>
 default:
 <code>
 }

Or in a single line:

let filtered = numbers.filter({$0 == 3})
print(filtered) //-> [3,3,3]
//filtered isn`t mutable

Filter

Use filter to loop over a collection and return an Array
containing only those elements that match an include
condition.

Example:

 // filter an array [1,2,3,4,3,3] -> [3,3,3]
 let numbers = [1,2,3,4,3,3]
 var filteredArray = [Int]()
 for number in numbers {
 if number == 3{
 filteredArray.append(number)
 }
 }
 print(filteredArray) //-> [3,3,3]

let sum2 = [1,2,3,4].reduce(0, {$0 + $1]}
print(sum2) //-> 10

Reduce

Use reduce to combine all items in a collection to create a
single new value.

Example:

//calculate sum [1,2,3,4] -> 10
var sum1 = 0
for number in [1,2,3,4] {
 sum1 += number
}
print(sum1) //-> 10

Or in a single line:

Default parameter function

If you omit the second argument when calling this
function, then the value of parameterWithDefault is 12 inside
the function body.

Example:

func someFunction(parameterWithoutDefault: Int,
parameterWithDefault: Int = 12) { }

Guard

A guard statement is used to transfer program control out of a
scope if one or more conditions aren’t met. The condition in
this example is an optional binding. The variable declared in
the guard can be used outside the closure.

Example:

var age: Int?
 guard let checkedAge = age else {
 print("Age is nil")
 return
 }
 print("The age is \(checkedAge)")

Application enter in background

When the app enters the background, this method is called.

Example:

AppDelegate -> func applicationDidEnterBackground
(_ application: UIApplication) { }

If the app returns from the background, this method is called.

AppDelegate -> func applicationDidBecomeActive_ applica-
tion: UIApplication) { }

Map

Example:

// transform [1,2,3,4] -> [3,6,9,12]
var transformArray = [Int]()
for number in [1,2,3,4] {
 transformArray.append(number * 3)
}
print(transformArray) //-> [3, 6, 9, 12]

Or in a single line:

let transform = [1,2,3,4].map({$0 * 3})
print(transform) //-> [3, 6, 9, 12]

Use map to loop over a collection and apply the same
operation to each element in the collection. The map function
returns an array containing the results of applying a mapping
or transform function to each item.

Defer

Use defer to write a block of code that is executed after all
other code in the function, just before the function returns.

Example:

func printSomeString() {
 print("Hello start function!")
 defer{
 print("Hello inside the defer!")
 }
 print("Hello end function!")
}

printSomeString() //-> Hello start function!
 Hello end function!
 Hello inside the defer!

Closure
Closures can capture and store references to any constants
and variables from the context in which they are defined. This
is known as closing over those constants and variables. Swift
handles all of the memory management of capturing for you.

Example:

// FirstFile.swift
class Closure: UIViewController {
//Declare a variable
 var name: ((_ returnName: String)->Void)?
//call closure
 func returnName() {
 name?("John")
 }
}
//SecondFile.swift
let closure = Closure()
closure.name = { returnName in
 print(returnName)
}
closure.returnName() // -> John

Protocol

Example:

protocol CarProtocol {
 var model: String { get }
 var HP: Int { get }
 var type: String { get }
 func description() -> String
}

class Car: CarProtocol {
 var color: String
 let model: String
 let HP: Int
 var type: String
 init(model: String, HP: Int, type: String) {
 self.model = model
 self.HP = HP
 self.type = type
 self.color = "Red"
 }

 func description() -> String {
 return " Model: \(model) \n Color: \(color) \n Type: \(type)
\n Power: \(HP) HP \n"
 }
}

let car = Car(model: "Audi", HP: 120, type: "A8")
print(car.description()) // -> Model: Audi
 Color: Red
 Type: A8
 Power: 120 HP

A protocol defines a blueprint of methods, properties and
other requirements that suit a particular task or piece of
functionality. The protocol can then be adopted by a class,
structure or enumeration to provide an actual implementation
of those requirements. Any type that satisfies the
requirements of a protocol is said to conform to that protocol.

View ask to
appear to screen

viewWillAppear

View is visible
on screen

viewWillDisappear

viewDidAppear

viewDidLoad

viewDidDisappear

view isn`t visible
on screen

viewExist?

Disappearing

Yes

No

Disappeared

Appearing

View Controller lifecycle

Higher Order Function

Reference material:

https://developer.apple.com/library/content/documentation/
Swift/Conceptual/Swift_Programming_Language/

Innovative Minds

assist-software.net

